РЕШИТЕ ЗАДАЧУ ПО ГЕОМЕТРИИ ЗА 8 КЛАСС
Диагональ равнобедренной трапеции перпендикулярна боковой стороне.
Найдите радиус окружности, описанной около трапеции, если диагональ
равна 12 см, а боковая сторона - 9 см
Ответы
Ответ дал:
0
тр-к ABD -прямоугольный, по т. Пифагора можно найти основание AD: √(144+81)=15
Если диагональ трапеции перпендикулярна ее боковой стороне, то центр окружности, описанной около трапеции, лежит на середине ее большего основания. Радиус описанной около трапеции окружности в этом случае равен половине ее большего основания;
значит R=7.5
Если диагональ трапеции перпендикулярна ее боковой стороне, то центр окружности, описанной около трапеции, лежит на середине ее большего основания. Радиус описанной около трапеции окружности в этом случае равен половине ее большего основания;
значит R=7.5
Похожие вопросы
2 года назад
2 года назад
7 лет назад
7 лет назад
10 лет назад
10 лет назад
10 лет назад