• Предмет: Алгебра
  • Автор: demosnikita
  • Вопрос задан 10 лет назад

3cos2x=4sinxcosx-sin2x помогите решить, уравнение смешанного типа

Ответы

Ответ дал: KuOV
0
3cos2x = 4sinxcosx - sin2x
3cos2x = 2sin2x - sin2x
3cos2x = sin2x
3cos2x - sin2x = 0      делим обе части на cos2x ≠0
3 - tg2x = 0
tg2x = 3
2x = arctg3 + πn
x = 1/2 · arctg3 + πn/2

Похожие вопросы