Высота правильной треугольной пирамиды равна 6 см. Радиус окружности, описанной около её основания - 4√ 3 (4 корней из 3) Вычислить: а) длину бокового ребра пирамиды б) площадь боковой поверхности пирамиды
Ответы
Ответ дал:
0
В основании пирамиды равносторонний треугольник
его сторона = 2RCos30 = √3*4√3 = 12
длина бокового ребра =
апофема =
площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
S бок = (12 + 12 +12)*4√3/2 = 72√3
Похожие вопросы
2 года назад
2 года назад
7 лет назад
10 лет назад
10 лет назад
10 лет назад