В параллелограмме KLMN точка B - середина стороны LM. Известно, что BK=BN. Докажите, что данный параллелограмм - прямоугольник.
Ответы
Ответ дал:
0
дано: клмн - параллелограмм
лб=бм бк=бн.
доказать: клмн - прямоугольник
доказательство: так как лк=мн кб=бн и лб=бн, то треугольники амд и амс равны по третьему признаку(по трём сторонам)
так как эти треугольники равны, то и углы у них равны(угол клб = нмб ; угол лбк = углу мбн угол лкб = углу мнб) , нас интересуют углы клб и нмб. они односторонние, значит их сумма должна быть 180 градусов (так как лк и мн параллельны а лм их пересекает, а при пересечении двух параллельных прямых третьей сумма односторонних углов равна 180 градусов). следовательно угол клб и угол нмб = 90 градусов, а если в параллелограмме хотябы один угол прямой, то это прямоугольник.
всё.
Похожие вопросы
2 года назад
2 года назад
7 лет назад
10 лет назад
10 лет назад
10 лет назад