• Предмет: Геометрия
  • Автор: СамСебе
  • Вопрос задан 10 лет назад

В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четывре раза больше площади треугольника BOC.

Ответы

Ответ дал: Hrisula
0

Вспомните, что диагонали параллелограмма точкой пересечения делятся пополам. Площади обраовавшихся треугольников равны. См. вложение

Приложения:
Ответ дал: Викушка95
0

Диагонали параллелограмма делятся при пересечении пополам.

Без проблем можно доказать, что тр-к АВО = тр-ку СОD, а тр-к ВОС=тр-ку АОD по двум сторонам и углу между ними. Рассмотрим тр-к АОВ и ВОС, площадь тр-ка равна половине произведения основания на высоту. Основания этих тр-ков равны, а высота общая. Значит их площади равны. Из выше сказанного следует, что площади всех четырех труугольников равны между собой. Т.е. площадь параллелограмма в 4 раза больше площади тр-ка.

Приложения:
Похожие вопросы