Ответы
Ответ дал:
0
Пусть ABC - треугольник, BM - медиана. Достроим его до параллелограмма ABCD так, что AB=CD; BC=AD. BD - диагональ, при этом BD=2BM. Предположим, что 2BM=BD>AB+BC. Так как BC=AD, из этого следует, что BD>AB+AD, но тогда для треугольника ABD не выполняется неравенство треугольника, противоречие. Значит, такого быть не может.
Ответ дал:
0
Фактически переписал решение, не используя слова "параллелограмм".
Ответ дал:
0
что значит дальше аналогично? можете пояснить?
Ответ дал:
0
можете написать дальше решение?
Ответ дал:
0
не тупи.
так, что AB=CD; BC=AD. BD - диагональ, при этом BD=2BM. Предположим, что 2BM=BD>AB+BC. Так как BC=AD, из этого следует, что BD>AB+AD, но тогда для треугольника ABD не выполняется неравенство треугольника, противоречие. Значит, такого быть не может.
так, что AB=CD; BC=AD. BD - диагональ, при этом BD=2BM. Предположим, что 2BM=BD>AB+BC. Так как BC=AD, из этого следует, что BD>AB+AD, но тогда для треугольника ABD не выполняется неравенство треугольника, противоречие. Значит, такого быть не может.
Ответ дал:
0
спасибо умным людям))
Похожие вопросы
2 года назад
2 года назад
7 лет назад
7 лет назад
10 лет назад
10 лет назад
10 лет назад