• Предмет: Геометрия
  • Автор: Настёнкааа
  • Вопрос задан 9 лет назад

Окружности с центрами E и F. Окружности с центрами E и F пересекаются в точках C и D, причем точки E и F лежат по одну сторону от прямой cd. докажите,что сд перпендикулярно еф. Желательно,с рисунком,спасибо

Ответы

Ответ дал: ponytasher
0
Перечерти мой рисунок.
Далее рассматриваем тр.-ник  ECD.В нём EC=CD(следовательно треугольник равнобедренный) и проведён диаметр EK.Нам нужно доказать,что он (EK) перпендикулярен CD.Для этого строим FC и FD,опять равнобедренный треугольник FCD,где FC=FD.Из равенства углов ECD=CDE и FCD=FDC получаем,что ECK=KDE.Выходит,что треугольник ECF и EDF равны по двум сторонам и двум углам между ними.Из этого следует,что угол CEK=DEK.
Теперь вернёмся к треугольнику ECD.В нём EK-биссектрисса,а значит и медиана.Отсюда следует,что CK=KD.Теорема доказана.

Приложения:
Ответ дал: zininakatya2009
0
не понятно где точка k и где точка f у тебя
Похожие вопросы