• Предмет: Геометрия
  • Автор: Кро000
  • Вопрос задан 9 лет назад

Прямая, перпендикулярна биссектрисе угла A пересекает стороны угла в точках M и N, а биссектриса угла в точке P. Докажите, что отрезок AP является медианой треугольника MAN.
Помогиииите срочно:))))

Ответы

Ответ дал: Pans
0
Треугольники МАР и NАР прямоугольные по условию. Т.к. МN перпендикулярна АР. А углы МАР и РАN равны, т.к. АР - биссектриса. АР - общая. Треугольники равны по катету и прилежащему острому углу. А в равных треугольниках против равных углов лежат равные стороны. В треугольнике МАР против угла МАР лежит сторона МР, а в треугольнике РАN против угла РАN лежит сторона РN. Углы равны, значит и стороны тоже равны.  А раз стороны равны, то АР - медиана треугольника АМN.
Похожие вопросы