• Предмет: Геометрия
  • Автор: aidana9
  • Вопрос задан 10 лет назад

докажите что если медиана треугольника перпендикулярна противоположной стороне то треугольник является равнобедренным

Ответы

Ответ дал: denislammen
0

Оба эти свойства доказываются совершенно одинаково. Рассмотрим равнобедренный треугольник АВС, в котором АВ = ВС.
Пусть ВВ1 - биссектриса этого треугольника.
Как известно, прямая BB1 является ось симметрии угла АВС. но в силу равенства AB = BC при той симметрии точка А переходит в С.
Следовательно, треугольники ABB1 и CBB1 равны. Отсюда все и следует. Ведь в равных фигурах равны все соответствующие элементы. Значит, ÐBAB1 = ÐBCB1. Пункт 1) доказан. Кроме этого, AB1 = CB1, т. е. BB1 - медиана и ÐBB1A = ÐBB1C = 90°; таким образом, BB1 также и высота треугольника ABC. t

Похожие вопросы