Докажите, что если у параллелограмма диагональ делит угол на две равные части, то он является ромбом
Ответы
Ответ дал:
0
Как известно - параллелограм - это такой 4-ех угольник, у которого противоположные стороны попарно параллельны, а ромб - это частный случай параллелограмма, у которого все стороны равны между собой. Таким образом, чтобы доказать, что параллелограм - это ромб, нужно доказать, что его две смежные стороны равны между собой.
Если диагональ параллелограмма разделила его угол пополам, то оба полученных треугольника с общей стороной - диагональю будут являться равнобедренными, т. к. их боковые углы - вертикальные при пересечении двух параллельных прямых секущей. А значит смежные стороны параллелограмма равны, а он - ромб.
Похожие вопросы
2 года назад
2 года назад
7 лет назад
10 лет назад
10 лет назад
10 лет назад