У
трапеции АВСД основание АД в 4 раза больше основания ВС, а площадь
трапеции 50. Точка О — точка пересечения диагоналей, точка Р — середина
основания АД, М — точка пересечения АС и ВР, точка N — точка пересечения
ВД и СР. Найти площадь треугольника МNО.
Ответы
Ответ дал:
0
Пусть F - точка пересечения АВ и DM, G - точка
пересечения AN и CD, К - точка пересечения продолжения AD c прямой
CК II BD;
Для треугольника ABD AO, BP DF - чевианы, и BO/OD = BC/AD = 1/4;
AF*BO*DP/(FB*OD*AP) = 1; AF/FB = 4; (это можно сразу заметить - ВР - медиана ABD, поэтому FO должно быть параллельно AD... докажите, полезно!)
По теореме Ван-Обеля AM/MO = AF/FB + AP/PD = 4 + 1 = 5;
MO = AO/6 = (1/6)*(4/5)AC = (2/15)*AC;
Точно также из треугольника ACD получается NO = (2/15)*BD;
По построению, CE II BD, то есть треугольник ACK подобен треугольнику MON, коэффициент подобия равен 2/15.
Поскольку BDKC – параллелограмм, AK = AD + BC, и площадь треугольника ACK равна H*(AD + BC)/2, где H – расстояние от С до AD, то есть – высота трапеции.
То есть площадь ACK равна площади трапеции S.
Отсюда площадь MON равна S*(2/15)^2 = 8/9;
Для треугольника ABD AO, BP DF - чевианы, и BO/OD = BC/AD = 1/4;
AF*BO*DP/(FB*OD*AP) = 1; AF/FB = 4; (это можно сразу заметить - ВР - медиана ABD, поэтому FO должно быть параллельно AD... докажите, полезно!)
По теореме Ван-Обеля AM/MO = AF/FB + AP/PD = 4 + 1 = 5;
MO = AO/6 = (1/6)*(4/5)AC = (2/15)*AC;
Точно также из треугольника ACD получается NO = (2/15)*BD;
По построению, CE II BD, то есть треугольник ACK подобен треугольнику MON, коэффициент подобия равен 2/15.
Поскольку BDKC – параллелограмм, AK = AD + BC, и площадь треугольника ACK равна H*(AD + BC)/2, где H – расстояние от С до AD, то есть – высота трапеции.
То есть площадь ACK равна площади трапеции S.
Отсюда площадь MON равна S*(2/15)^2 = 8/9;
Похожие вопросы
2 года назад
2 года назад
7 лет назад
7 лет назад
10 лет назад
10 лет назад
10 лет назад