Дан треугольник ABC, M ϵ AB, N ϵ BC, BM : BA = BN : BC = 3 : 5. Через прямую AC проходит плоскость β, не совпадающая с плоскостью треугольника ABC.
1) Докажите, что MN II β.
2) Найдите длину отрезка MN, если AC = 10 см.
Ответы
Ответ дал:
0
Треугольник АВС подобен треугольнику ЕВК по двум пропорциональным сторонам и углу между ними.
(АВ/ВЕ=СВ/ВК=5/2, угол В-общий) , АС=ЕК*(5/2)=4*2,5=10 см.
Из по добия треугольников следует, что угол ВЕК=углу ВАС-это соответственные углы, образованные при пересечении прямых ЕК и АС секущей АВ. Поэтому прямые ЕК и АС параллельны.
Прямая ЕК, не лежащая в плоскости альфа, параллельна прямой АС, лежащей в плоскости альфа. Значит, прямая ЕК параллельна плоск ости альфа .
(АВ/ВЕ=СВ/ВК=5/2, угол В-общий) , АС=ЕК*(5/2)=4*2,5=10 см.
Из по добия треугольников следует, что угол ВЕК=углу ВАС-это соответственные углы, образованные при пересечении прямых ЕК и АС секущей АВ. Поэтому прямые ЕК и АС параллельны.
Прямая ЕК, не лежащая в плоскости альфа, параллельна прямой АС, лежащей в плоскости альфа. Значит, прямая ЕК параллельна плоск ости альфа .
Похожие вопросы
2 года назад
2 года назад
2 года назад
2 года назад
9 лет назад