• Предмет: Алгебра
  • Автор: nemoy99
  • Вопрос задан 7 лет назад

Вычислить площади фигур, ограниченных указанными линиями

Приложения:

Ответы

Ответ дал: NNNLLL54
0

1); ; x-y+2=0; p to ; ; y=x+2\\y=0; ,; ; x=-1; ,; ; x=25\\S=intlimits^{25}_{-1}, (x+2), dx=frac{(x+2)^2}{2}Big |_{-1}^{25}=frac{27^2}{2}-frac{1}{2}=frac{728}{2}=364

2); ; y=x^2-3x+2; ; ,; ; y=x-1\\Tochki; ; peresrchenija:; x^2-3x+2=x-1; ; ,; ; x^2-4x+3=0; ,\\x_1=1; ,; ; x_2=3; ; (teorema. Vieta)\\S=intlimits^3_1, Big ((x-1)-(x^2-3x+2)Big ), dx=intlimits^3_1, (4x-3-x^2), dx=\\=(4cdot frac{x^2}{2}-3x-frac{x^3}{3})Big |_1^3=(18-9-9)-(2-3-frac{1}{3})=1frac{1}{3}

3); ; y=x^2+1; ,; ; y=0; ,; ; x=-1; ,; ; x=2\\S=intlimits^2_{-1}, (x^2+1), dx=(frac{x^3}{3}+x)Big |_{-1}^2=frac{8}{3}+2-(-frac{1}{3}-1)=3+2+1=6

4); ; y=x^2; ,; ; y=-3x\\Tochki; peresecheniya:; x^2=-3x; ,; ; x, (x-3)=0; ,; ; x_1=0; ,; x_2=3\\S=intlimits^0_{-3}, (-3x-x^2), dx=(-3cdot frac{x^2}{2}-frac{x^3}{3})Big |_{-3}^0=0-(frac{9}{2}-frac{-27}{3})=\\=frac{9}{2}+9=13,5

Приложения:
Похожие вопросы